TI TĂTATĂ ÎN ÎN ÎNTRĂ ÎN ÎNTRĂ

Seat No.

HN-003-028201

P. G. D. S. A. I. T. (Sem. II) Examination April - 2023 Advance Spectroscopic & Thermal Methods of Analysis for Pharma & Chemical Products : Paper - 201

Faculty Code : 003 Subject Code : 028201

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instruction : All questions are compulsory and carry equal marks.

1 Answer the followings : (any seven)

14

- (a) Define the terms: wavenumber and Frequency.
- (b) What is meant by (n+1) rule in spin-spin coupling in NVR?
- (c) Define the term: Base peak and Metastable ion.
- (d) How will you distinguish O-Nitrophenol and p-Nitrophenol using UV spectroscopy?
- (e) Write the application of DTA.
- (f) Write the strength and limitations of X-ray powder diffraction.
- (g) Explain TGA curve for Calcium oxalate.
- (h) How many peaks are obtained in CMR for o-xylene and p-chlorobenzoic acid.
- (i) write the full form of HMBC and COSY.
- (j) What is Hooks law in spectroscopy?

2 Answer the followings : (any two)

- (a) Draw the block diagram of TGA and explain it in details.
- (b) Sketch the NMR spectrum of Ethyl benzene and explain splitting of each signal.
- (c) Discuss types of shift and bands in UV spectroscopy in details.

HN-003-028201]

[Contd...

14

- **3** Answer the followings :
 - (a) Discuss Coupling constant in details in NAM spectroscopy.
 - (b) Calculate the ¹³CNMR value of each carbon of 2-butanol.

OR

- **3** Answer the followings :
 - (a) Draw the schematic diagram of IR Instrument and write its functioning.
 - (b) Enlist the analyzer used in mass spectrometry, discuss any one of them in details.
- 4 Answer the followings :
 - (a) State the Principle of Mass spectrometry and also discuss the application of Mass spectroscopy.
 - (b) How many types of electronic transition possible in Acetone and ethylene with respect to UV absorption.
- 5 Answer the followings :
 - (a) Discuss absorption due to carbonyl compound in UV spectroscopy in detail.
 - (b) Write a brief account on Popal Notation with suitable example.
 - (c) Explain Bragg's rule in p-XRD method.
 - (d) Explain instrumentation of DSC.

14

14

14

Data Table of ¹³C NMR Exaples

TABLE 5.1 in Missing Strategic In Song Libror 199. Friden of Netvender Strategic Shift (ppm) (A) ¹³C Atoms +9.1 +9.4 -2.5 α β 7 8 +0.3 4 +0.1 -1.1 1° (3°)* -3.4 1" (4")" -2.5 2 (37). 2" (4") -7.2 3" (2") -3.7 3" (3") -9.5 4" (1") -1.5 -8.4 4º (2º)

The notations 1° (3°) and 1° (4°) denote a CH, group bound to a R₂CH group and to a R₃C group, respectively. The notation 2° (3°) denotes a RCH₂ group bound to a R₂CH group, and so on.

3	TABLE	5.2	man à		
The Contract of Chain Alk	Some L nes (pp	inear, i m fron	nd Br TMS	unched	34
Compound	C-1	C-2	C-3	C-4	C-S
Methane	-2.3	A geographic that is the			
Ethane	5.7				
Propane	15.8	16.3	15.8		
Butane	13.4	25.2	25.2		
Pentane	13.9	22.8	34.7	22.8	13.9
Hexane	14.1	23.1	32.2	32.2	23.1
Heptane	14.1	23.2	32.6	29.7	32.6
Octane	14.2	23.2	32.6	29.9	29.9
Nonane	14.2	23.3	32.6	30.0	30.3
Decane	14.2	23.2	32.6	31.1	30.5
Isobutane	24.5	25.4			
Isopentane	22.2	31.1	32.0	11.7	
Isohexane	22.7	28.0	42.0	20.9	14.3
Neopentane	31.7	28.1			
2,2-Dimethylbutane	29.1	30.6	36.9	8.9	
3-Methylpentane	11.5	29.5	36.9	(18.8,	
				3-CH	5
2,3-Dimethylbutane	19.5	34.3			
2,2,3-Trimethylbutane	27.4	33.1	38.3	16.1	
2,3-Dimethylpentane	7.0	25.3	36.3	(14.6.	
				3-CH	(₃)

	TABLE 5,3						
incremental Substituent Effects (ppm) on Replacement of H by Y in Alkanes. Y is Terminal or Internal ^e (+ downfield, - upfield)							
Ĩ	a		ž	Ĭ.	ž		
\sim	$ \sim_{\rm Y} $	e e sind	\sim				
β * Terminal			P In	ternal			
		f	ß	}	<u> </u>		
Ÿ	Terminal	Internal	Terminal	Internal	and associated in some		
CH,	+ 9	+ 6	+10	+ 8	-2		
CH=CH2	+20		+ 6		-0.5		
C=CH	+ 4.5		+ 5.5		-3.5		
COOH	+21	+16	+ 3	+ 2	-2		
CO0-	+25	+20	*+ S	+ 3	-2		
COOR	+20	+17	+ 3	+ 2	-2		
COCI	+33	+28	.6	+ 2			
CONH	+22		+ 2.5		-0.5		
COR	+30	+24	+ 1	+ 1	-2		
СНО	+31		0		-2		
Phenyl	+23	+17	+ 9	+ 7	-2		
OH	+48	+41	+10	+ 8			
OR	+58	+51	+ 8	4.3			
OCOR	+51	+43	+ 0	1 3	~ 5		
NH2	+29	*24	- TELL - 1. 10	- + 10			
NH	720	T 24		- T O			
NHK	+ 31	+31	* 8	+ 0			
NK2	+42		* 0		->		
NK;	731		+ 3		{		
NO ₂	+63	+ 57	+ 4	+ 4			
CN	+ 4	+ 1	43	+ 3	~ 3		
SH	411	+11	+12	+11	-4		
SR	+20		+7	×	-3		
F	+68	+63	+ 9	+ 6	an độ		
CI .	+31	+32	4-11	+ IU	~4		
Br	+20	+23	*11	T-10			
£ .	- 0	* 4	+11	712	1		

*Add these increments to the shift values of the appropriate carbon atom in Table 5.2 or to the shift value calculated from Table 5.1. Source: F.W. Wehrli, A.P. Marchand, and S. Wehrli, Interpretation of Carbon-13 NMR Spectra. 2nd ed., London: Heyden, 1983.

in the second		T.	ABLE 6.9		
(and to montal)	Shintalor the Abomatic	CartionAtomax	Monosubisti	hed Banzeners	
	is lago milach = no (sop enda Ac	in offender inter-	a(2),0,20,003,200	nullear companies?
	C-1	<u></u>			C of Substituent
Substituent	(Attachment)	C-2	C-3	C-4	(ppm from TMS)
H	0.0	0.0	0.0	0.0	
CH ₃	9.3	+0.7	-0.1	-2.9	21.3
CH2CH23 CHI/CHI	+15.6	-0.5	0.0	-2.6	29.2 (CH ₂), 15.8 (CH ₃)
C(CH_).	17 - AU-3	-2.0	0.0	-2.5	34.4 (CH), 24.1 (CH ₃)
CH-CH-	+91	- 3.4	-9.4		
CICH	-5.8	469	+0.2	-0.3	84 D (C) 77 8 (CH)
C.H.	+12.1	-1.8	-0.1	-1.6	
CH2OH	+13.3	-0.8	-0.6	-0.4	64.5
CH2OCCH,	+7.7	-0.0	~0.0	~0.0	20.7 (CH.). 66.1 (CH.).
6					170.5 (C=O)
OH	+26.6	-12.7	+1:6	-7.3	
OCH,	+31.4	-14:4	+1.0	-7.7	54.1
OC.H,	+29.0	-9.4	+1.6	-5.3	
Ŷ					ъ.
OČCH.		~ *	~ 4		and an and a constant of the second
0	3 diale - 4	~/.1	-0.4	-3.2	23.9 (CH ₃), 169.7 (C==O)
L					
ČH .	+8.2	+1.2	+0.6	+5.8	192.0
Ŷ					
ĊСН,	+7.8	0.4	0.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.4.4.499975 Anna Anna Anna Anna
Q			-0.4	¥2.0	24.0 (CH1), 195.7 (CmcO)
CCells	+9.1	+1.5	-0.2	+3.8	196.4 (C=O)
Ŷ					
CCF,	- 5 6	J. 1. 17			
0		71.0	+0.7	+6.7	
l.					
COM	+2.9	+1.3	+0.4	+4.3	168.0
Y					
COCH,	+20				and the second
0	- and 10	T 9	-0.1	++4.X	51.0 (CH ₃), 166.8 (C==O)
					100.0
	+4.6	+2.9	+0.6	+7.0	
Cumpy NEW	-16.0	+3.6	+0.6	+4.3	119.5
NCHA	+19.2	-12.4	+1.3	-9.5	
0	······································	-13.7	+0.8	-11.8	40.3
Ĩ					
NHCCH,	+11.1	-9.9	+0.2	- 5 6	
NO ₂	+ 19.6	-5.3	+0.9	+6.0	
N-C-O	+5.7	-3.6	+1.2	-2.8	129.5
P .	+35.1	14.3	+0.9	-4.5	
	+6.4	+0.2	+1.0	-2.0	
1	-3.4	+3.4	+2.2	-1.0	
CF.		+9.9	+2.6	-7.3	
SH			+0.4	+3.4	
SCH,	+ 10.2	-12	TU.2 40 4	-3.3	150
SOINH	+ 15.3	-2.9	+0.4		के को भू जेंग
SI(CH ₃) ₃	+13.4	+4.4	-1.1	-1.1	

"See D. E. Ewing, Org. Magn. Reson., 12, 499 (1979) for chemical shifts of 709 monosubstituted benzenes.

Base values:	ethylene (8 123) x C-1 C-2		and	benzene	(5 128)		
				x	X = C - 1 (ipso)		
				para artho			
	, Alk	enes i	4	Benz	enes		
		C-2	(-)	ortho	meta	para	
			(ipso)			4 ··· ···	
CN.	10	-8	9	0	ò	2	
R. K	16		15	O	0	2	
R	23	8	21	o	0	-2	
	15	6	9	0	0	2	
-си=си	10000	approxim.		4	0	ø	
-Calle, -Ar	13	1 1	13	- 1	1	1	
	25	-34	35	-14	. 1	-5	
-a	3	6	6	0	1	2	
		1		3	2	-2	
and the second sec	38	7	-32	10	3	1	
-NH.	- sites -	-1000.007	18	-13	1	-10	
NHR	- 	- 19986-	20	-14	1	-10	
NR.	- newsy -		22	-16	1	-10	
NO.	22	1	20	5	1	6	
-NHCOR NRCOR			10	7	1	-4	
-CN	-15	15	-16	4	1	6	
SH	-cécto-	-stanic	4	1	i.	. · · · · · · · · · · · · · · · · · · ·	
-011			27	-13	1	-7	
-OR	29	-39	ંંડે૦	-15	Ť.	8	
-ocor	18	-27	23	6	3	-2	
-cooncoorcon!	**	9	2	2	0	5	
-COR, -CHO	14	13	9	1	1	6	
	-		16	0	0	4	
-PMc,		-425.07	14	1.6	0	1.	
-PAI,	WENNY		9	5	0	0	

Table 3.16 Influence of functional group X on the chemical shift positions (8) of nearby carbons in alkene groups and benzene rings

	<u></u>	or-shif	t	β−shift	γ_shift
X :	Х-СН ₂ -	х—сн В	$-x - \frac{R}{C} - \frac{R}{R}$		- -
		or 2	U1 3	· · · · ·	
-cn,	9	6	/ 3	9	-3
$-\mathbf{R}$: see table 3.11					
axial-CH ₃	1	· · · · ·	ender).	5	6
equatorial CH,	6	in.	- 2004	9	0
(in cyclohexanes)					× .
$-CH = CH_3$	22	16	12	7	
-с≡сн	4		"emerci-	3	-3
$-C_6H_5$, $-Ar$	23	17	11	10	-3
analyses and the second s	70	-9-49	ik sama je	8	7
Cl	31	3.5	42	10	-5
······································	19	28	37	11	4
	-7 to 20		evalue	1.1	2
$-NH_2$, $-NHR$, $-NR_2$	29	2*4	18	11	
-NO:	62			3	5
-NHCOR, -NRCOR	10	citane.		0	0
-NH3*	25	-	-	7	
-CN	Э	4	inned	2	
SH	2	. souther	-soule	2	2
-OH	50	45	40	9	3.
-OR	50	24	17	10	-6
-OCOR	52	50	45	7	-6
-COOH,-COOR,-CON	20	16	13	2	3
-COR,-CHO	30	24	17	2	_3
-SO_HSO_N	50			3	0

Table 3.15 Influence of functional group X on the chemical shift position (δ) of nearby carbons in alkane chains

where $A_n =$ characteristic value of the chemical shift of the observed C, which depends upon the number of H atoms (n) attached to it n = number of groups $\alpha =$ carbon atoms in the α -position $\gamma =$ in γ and $\delta =$ in δ positions

The characteristic values of α , γ and δ C-atoms (i.e., A_n) to be used for the calculation depend upon the number of H atoms on the observed -C and are given in Table 3.23. Example

4-Methylheptane	1 CH ₃ -	2 CH ₂ -	$_{\rm CH_2}^3$	4	сн – сн І сн,	2-CH2-CH3
	N	TABLE	3,23			

Observed C	A_n			7	6
-CH3	6.80	CH ₃ CH ₂ CH C	0 9.56 17.83 25:48	-2.99	0.49
-CH2-	15.34	CH ₃ CH ₂ CH C	0.0 9.75 16.70 21.43	2.69	0.25
-çн	23,46	CH, CH, CH CH C	0.0 6.60 11.14 14.70	-2.07	0.0
	27.77	CH ₃ CH ₂ CH C	0.0 2.26 3.96 7.35	0.86	0.0

Note: Methyl groups in α and all groups in β have no effect. Groups in γ position have negative or only slightly positive effect.

There are 5 groups of equivalent C-atoms.

$\delta_{\rm C}$		$A_n + n \alpha_{32}^* + n\gamma + n\delta$	(observed δ)
S(CH) C	1	$6.8 + 9.56 + (-2.99) + (2 \times 0.49) = 14.35$ (qr)	14.35 (qr)
S(CH-) C	,	$15.34 + 9.75 + (2 \times (-2.69)) + 0.25 = 19.96$ (tr)	19.96 (tr)
SICH .) C		15.34 + 9.75 + 16.70 + (-2.69) + 0.25 = 39.35 (tr)	39.35 (tr)
S(CH) C	•	$23.46 + (2 \times 6.60) + (-2.07) = 34.59$ (d)	34.59 (d)

Table 3.13 δ values for the carbons in alkynes (sp)

REPRESENTATIVE ALKYNES	i I
acetylene (ethyne) CH≡CH § 72	
R—C≡CH 83 66	$\begin{array}{ccc} R-C \equiv C-R' & C_6 H_5 - C \equiv CH \\ 82 & 83 & 78 \end{array}$
$C_6H_5 - C \equiv C - R$ 86	$C_6H_5 - C \equiv C - C_6H_5$ 90
EMPIRICAL PREDICTIONS FOR OTHE	ER ALKYNE CARBONS
Chemical shift (δ) = 72 + 2	Σ(increments for carbon atoms)
$\begin{array}{c} C - C - C - \delta \\ \delta \\ \gamma \\ \beta \end{array}$ increments +0.5 0 +5 +	$\begin{array}{c c} C \longrightarrow C \implies C \longrightarrow C \longrightarrow$

Table 3.14 δ values for the carbons in aromatic and heterocyclic molecules (sp² and sp³ carbons listed)

base value 72

HN-003-028201]